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CHAPTER I 

INTRODUCTION AND SUMMARY 

This report  presents the work performed for NASA/JPL during 

the quarterly period ending March 4, 1968. 

applied research program which has  been in  progress  for several  

years.  The pr imary objective of the program is the improvement of 

converter performance by a continuous interplay between theoretical 

analysis and experimental results.  

This work is par t  of an 

An experimental study of the cesium-oxygen system has been 

started in order to determine the behavior of cesium oxides as 

electronegative additives, and to  achieve practical  methods for con- 

trolling them. (Chapter 11). Two a reas  of activity were involved: 

mass spectrometry and differential thermal analysis to identify 

chemical species and determine their  properties, and diodes to 

evaluate surface effects and thermionic performance. A quadrupole 

mass -spectrometric system was constructed, and the basic  operation 

of the system was examined. An apparatus was designed and con- 

structed to form accurate mixtures of cesium and oxygen. A fila- 

mentary diode was designed and constructed to study emitter work 

functions in the presence of various mixtures of cesium and oxygen. 

A differential thermal analyzer was operated with cesium; several  

shortcomings were found, and the system is under modification. A 

thermionic converter was set  up to study the effect of gaseous oxygen, 

using argon as  a ca r r i e r  gas. 

The relation between surface orbital electronegativity and work 

function, f rom the standpoints of both thermodynamics and quantum 
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mechanics, was analyzed (Chapter 111). First it was shown that the 

electronic structure of crystals can be  described by means of spin- 

orbitals which a r e  localized around individual lattice sites. Second, 

electronegativity was related to the chemical potential of a n  electron 

in a spin-orbital. Third, it was shown that the work function of a 

uniform surface equals the neutral orbital electronegativity of a spin- 

orbital localized around a surface atom. 

A variable- spacing converter with a specially treated single- 

crystal  tungsten emitter and a polycrystalline molybdenum collector 

was constructed. Experimental data was obtained for three emitter 

temperatures and a wide range of interelectrode spacings (Chapter IV). 

The performance map of this converter is almost completed. 

Two types of vapor-deposited mater ia l  were procured and 

examined, in the form of deposits 0.2 inch thick. 

and preferred orientation were studied in the as-received condition 

and after exposure t o  various heat treatments in  a vacuum (Chapter V). 

The microstructure 

The computer program for plasma analysis was reviewed, and 

particular attention was devoted to the boundary conditions at the 

emitter and collector sheaths (Chapter VI). These boundary con- 

ditions were modified, and the effect of this modification was 

exam in e d . 
No items of new technology a r e  included in this report. 
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CHAPTER I1 

ELECTRONEGATIVE ADDITIVES 

F. Fraim,  F. Holly, and M. Shaw 

During the past quarter work was begun in several  a reas  for the 

investigation of additives. A mass  spectrometer system has been built 

to study the species which volatilize from heated additive samples. 

Differential thermal analysis i s  being used to study the gross properties 

of various additives such as melting points, transition points, deeompo- 

sition points I and temperature ranges of chemical reactions. Filamen- 

tary diodes a r e  being built t o  study the effect of additives on thermionic 

emission from hot filaments. 

The first additive to be studied is cesium oxide. A l l  of the above 

techniques a r e  being used to analyze the cesium-oxygen system. 

order t o  produce repeatable oxide mixtures, an  apparatus has been built 

to make oxide samples under carefully controlled conditions. 

a r e  produced in capsulesp which a r e  then sealed and stored fo r  later use, 

In 

The samples 

A. MASS SPECTROMETER 

The major components of the mass  spectrometer/ molecular beam 

system a r e  the Knudsen cell o r  sourcel the vacuum system, the mass  

spectrometer II and the signal detection and amplification apparatus. A 

schematic diagram of the system is shown in Figure 11-1 and a photograph 

in Figure 11-2. 

Construction of the systemll except for  the Knudsen cell, is essen- 

tially complete. 

the following operations: 

Construction of the main vacuum system has involved 

11- 1 



Modification of the crossI1 by an apertured partition to 

separate the high-vacuum chamber housing the mass  spec- 

trometer from the intermediate-vacuum chamber housing 

the Knudsen cell. This modification was hampered by the 

tendency of the c ros s  to spring out of shape, and it was 

decided not to put a window into the side wall of the cross ,  

a s  originally had been planned. 

pumped by its own 50-liter/ sec ion pump. 

Each chamber is separately 

Welding in the pumping lines and leak-checking at the various 

stages of vacuum system assembly. 

copper gaskets (supplied by Ultek) needed an additional 

annealing before they would seal. 

difference of opinion on this subject among various researchers .  

It was found that the 

There appears to be some 

Mounting a shutter, a chopper, and a window on one of the 

ports (see Figure II-1). 

in distinguishing between particles of a given charge-to-mass 

ratio which originate in the Knudsen cell and those which a r i s e  

from extraneous sources. 

The purpose of the shutter is to  aid 

The chopper in conjunction with 

an ac  detection system will be useful in extracting weak 

signals from the background. 

to use a lock-in amplifier. 

the chopper and shutter a r e  magnetically coupled, bakable 

devices 

Machining of accessories for the mass  spectrometer and 

alignment. 

(E. A. I. Model 250) is operated in the I I  cross  beam" mode. 

In some cases  it will be necessary 

The rotary feed-throughs which drive 

The electric quadrupole mass  spectrometer 

A shield was constructed to surround the ionizer. This 
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68-R-3-23 

Double-flanged 50-liter/ sec ion pump which 
evacuates space where Knudsen cell resides 

Single-flanged 50-liter/ sec ion pump which 
evacuates high-vacuum chamber 

High-vacuum chamber or cross  

Position of apertured partition between Knudsen 
cell chamber and high-vacuum chamber 

Quadrupole 

High-vacuum valves 

Sorption pump manifold 

Chopper 

Shutter 

Knudsen cell (5  x torr)  

Figure 11- 1 Schematic Diagram of Mass Spectrometer System. 
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shield can be coupled to a liquid-nitrogen transfer tube 

passing through the wall of the vacuum chamber for  cool- 

ing when condensible vapors a r e  being studied. Shielding 

the mass  spectrometer from molecules not in the direct beam 

wil l  be especially desirable when the lock-in amplifier is in 

operation, and will  be generally useful in protecting the 

multiplier and eliminating I' ghost" signals. 

Alignmeat of the mass spectr,ometer with reSpect.to the 

molecular beam was somewhat difficult due to the unavail- 

ability of scale drawings of the mass spectrometer and the 

necessity of keeping the mass  spectrometer under vacuum 

a s  much as possible. 

with the instrument were necessary. 

positions of the spectrometer and shield were indexed to  

simplify futur e a s  s emblie s. 

Modifications of the adapter supplied 

The angular and vertical 

(5) Construction of a simple gas  flow system (see Figure 11-3). 

The purpose of this apparatus i s  to produce a molecular beam 

of the same density and profile as wil l  be produced under 

operating conditions with the Knudsen cell in place. 

be used in preliminary manipulations with the mass spec- 

trometer and wil l  provide a crude means of calibration 

when the test  gas i s  of known composition. 

It will 

The system has been put through a light bake-out, and the mass 

spectrometer has been operated on the background gases. 

Detailed drawings for construction of the Knudsen cell  a r e  nearly 

completed. 
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According t o  preliminary calculations, pressures  under typical 
-3  experimental conditions will approximate 5 x 10 tor r  in the Knudsen 

-5 
cell, 10 

10 

The f i rs t  project for the system wil l  be to analyze the high-temperature 

chemistry of cesium oxides. 

t o r r  in chamber A (see Figure 11-1) housing the cell,  and 

torr a s  the background in the mass spectrometer chamber (B and C). -8  

B. APPARATUS FOR CESIUM OXIDE PREPARATION 

In order to have a reproducible mixture of cesium and oxygen for 

the various experiments, a special apparatus has been builts The purpose 

of this apparatus i s  t o  maintain rigid control on the conditions under which 

the oxides a r e  formed: closely controlled amounts of cesium and oxygen 

a r e  combined under controlled temperature conditions. 

formed in a thin-walled molybdenum capsule which is sealed of€ and can 

later be cracked open when the oxide is wanted. These capsules wil l  be 

used in  all. of the experiments, ensuring accurate control over the oxides 

used in each experiment. 

The oxide is 

Figure 11-4 i s  a drawing of the apparatus which has been built 

to  produce the oxide capsules. 

two molybdenum sections. 

which the oxide is formed. 

system through a copper tube which i s  pinched off to  seal  the capsule. 

The second molybdenum section is a plug in the oxygen feed line which is 

used to  isolate the oxygen line from the res t  of the system during out- 

gassing and cesiating of the capsule. 

is cracked open by pinching the copper tube. 

quantity of oxygen is then allowed to  react with the cesium. ,After final 

evacuation of the system the capsule is pinched off and stored for  later use. 

The system is made of copper tubing with 

One molybdenum section is the capsule in 

This capsule is connected to the r e s t  of the 

When oxygen is desired, this plug 

A precisely measured 
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C. FILAMENTARY DIODES 

To observe the effects of the volatile species of cesium oxide on 

emitter work function, filamentary diodes will be used. 

are well suited for obtaining this type of data due to  their simplicity, 

accuracy and low cost. 

these diodes. 

These diodes 

The capsules discussed above will  be used in 

Figure 11-5 is a design drawing of the filamentary diode. The 

emitter is a tungsten filament, while the cylindrical collector and guards 

a r e  nickel, The envelope i s  made of stainless steel tubing. 

through is a ceramic octal plug. 

The lead- 

The data that will  be obtained with these filamentary diodes includes 

changes in work function vs additive temperature and filament temperature, 

the additive temperatures at which these work function effects a r e  obtained, 

and the approximate values of oxygen pressure estimated from the total 

pressure.  A l l  of this data is  significant in predicting how an  actual 

thermionic converter will perform when cesium oxide is introduced. 

D. STUDY OF CESIUM-OXYGEN SYSTEMS BY DIFFERENTIAL 
THERMAL ANALYSIS 

The differential thermal analysis of certain systems such as the 

ones containing cesium is a difficult problem, because not only does 

the sample have to be contained in a controlled atmosphere, but also 

special handling techniques a r e  needed to introduce both cesium and 

oxygen into the analyzer. 

Scientific Co. has been modified for  the purpose. 

holder has been designed and built, and it is illustrated schematically 

in Figure II-6. The Inconel block contains two wells. 

A Differential Thermalyzer made by Fisher 

A new specimen 

One is filled 

11-9 



with molybdenum powder instead of the customary alumina, and the 

reference thermocouple is brazed fixed through a sealing plug. 

other well is designed to  collect condensing cesium, and it contains the 

other thermocouple of the differential pair. The block is supported by 

The 

a thin-walled Inconel tube welded to it and to a closing cap a t  the upper 

end. 

externally (Figure IC-7). 

closing cap and ca r r i e s  a metal-to-metal bellows valve connected to a 

vacuum system, an oxygen-administrating system, and a pi-ece of copper 

tube from which cesium can be distilled into the sample well. 

assembly, the system was baked a t  200°C for two days at an internal 

pressure lower than 10 After it was verified that the system 

was leak-tight, glass capsules containing 1 g of cesium were enclosed 

in the copper side tube, which was sealed again by the standard pinch-off 

technique. 

cesium was distilled into the sample well. 

The thermocouples pass through the closing cap and a r e  connected 

A stainless steel tee is also welded to the 

After 

- 7  torr. 

After evacuation the glass capsules were cracked, and the 

At  present the system contains only cesium, and no oxygen has 

The preliminary runs were only moderately successful, been added. 

mainly because of the unknown thermal properties and the behavior 

of the system. It may have to  be opened and calibration curves obtained 

with molybdenum vs molybdenum powder under vacuumx and some of the 

thermocouple connections must be better thermostated in order to  obtain 

meaningful results with the pure cesium system. After this has been 

accomplished, a small controlled amount of oxygen will be introduced 

into the system, and thermograms will  be obtained. 

11- 10 
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11- 12 



c 

T H E R M  

6 8 -R - 3  - 27 

Figure 11- 7a. Components of Modified DTA Sample Holder 

68-R - 3  -28 

Figure 11- 7b. Assembled DTA Sample Holder. 

11- 13 



T H S R M O  E L E C T R O N  
C O R P O R A T I O N  

11- 14 



CHAPTER I11 

QUANTUM-THERMODYNAMIC MEANING O F  
ELECTRONEGATIVITY AND WORK FUNCTION 

Elias P. Gyftopoulos and George N. Hatsopoulos 

A. INTRODUCTION 

1 - 3  
In previous publications by Steiner and Gyftopoulos, emi s s ion 

phenomena occurring at metallic surfaces a r e  analyzed in te rms  of 

surface atoms and their orbital electronegativity, For example, in 

Reference 1 the view is advanced that electrons emitted thermionically 

f rom a pure uniform surface of a crystal  originate from a "valence 

orbital" of an  "atom on the surface." It i s  assumed that the shape, the 

ionization energy, the electron affinity, and the excitation energies of 

this orbital a r e  precisely defined, although not necessarily spectro- 

copicallytobservable, and that they a r e  determined by the many-body 

interactions of the crystal. 

that the work function of the surface must  equal the neutral orbital 

electronegativity of the valence orbital of the surface atom. 

On the basis of this picture, it is concluded 

This way of thinking about a crystal  and i ts  surface raises  two 

questions. The f i r s t  relates to the validity of viewing the electronic 

structure of a crystal  in te rms  of orbitals which a r e  associated with 

individual lattice si tes,  such a s  a valence orbital of a surface atom. 

It is  customary to think of the electrons a s  belonging to  the crystal  a s  

a whole, and therefore it is not obvious that electrons can be assigned 

to, localized around, individual lattice sites. 

The second is a relatively old question. It re fe rs  to the meaning 

of electronegativity. 

chemical studies, and yet i t  has not been given a rigorous definition. 

This quantity has been found useful in many 

111- 1 
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The purpose of this chapter i s  to discuss the preceding two 

questions, in the context of the one-electron approximation for the 

electronic structure of many-electron systems. 

picture of localized o r b i t d s  i s  valid, and that electronegativity equals 

the negative of the chemical potential of an electron in an orbital. 

It i s  shown that the 

The chapter is  organized a s  follows: 

derivation of the localized orbitals i s  discussed. 

First the procedure for the 

These orbitals a r e  

shown to provide a description of the electronic structure of crystals 

which is entirely equivalent to the well known quantum-mechanical 

picture of electrons in metals.  

identification of electronegativity 

summarized. 

uniform surface equals the orbital electronegativity of a surface atom. 

Second, the work of the authors on the 
4 

with the chemical potential i s  

Third, it i s  shown that the work function of a pure 

B. LO CA LIZ E D S PIN - ORB ITA LS FOR CRYSTAL LATTICES 

The equivalence between the descriptions of the electronic 

structure of crystals by means of either non-localized, band structure 

theory, o r  localized spin-orbitals i s  best  understood through a brief 

review of procedures employed for the analysis of any N-electron 

system 

Quantum-mechanically, the analysis of the energy eigenstates of 

the electronic structure of N-electron systems is very difficult. To 

avoid the difficulty, the electrons a r e  treated a s  an ideal substance. 

In other words, the N-electron Hamiltonian operator i s  reduced to a 

sum of N separable one-electron Hamiltonian operators. 

methods a r e  used for the reduction. 

a r i s e  f r o m  the degree to which exchange and correlation effects a r e  

Various 

Differences between methods 

111-2 



included in the one-electron potential energy. 

methods a r e  approximate and not all  methods a r e  equally accurate. 

A given one-electron Hamiltonian operator defines an energy 

In this regard, all 

eigenvalde problem. I The eigenfunctions and eigenvalues of this 

operator can be more  readily found than those of the complete N-electron 

operator. Each eigenfunction, one-electron orbital, of a system with 

more  than one nucleus, i s  delocalized throughout the system and i s  

given the same interpretation a s ,  say, the eigenfunctions of the 

hydrogen atom. 

two electrons with opposite spins. 

equals approximately the energy required to extract an  electron from 

the orbital, and i t  represents an ionization energy of the system. 

When the orbital i s  occupied by an electron with a given spin, i t  i s  

called a spin-orbital. In many applications, a different orbital is 

For  example, the orbital can accommodate a t  most 

The negative of the eigenvalue 

used for each spin. 

spatial dependence 

In other words, each spin-orbital has i ts  own 

N* 
By virtue of the ideal substance assumption, the eigenfunction $ 

for  a given state of the system as a whole, should be given by the 

product of the occupied spin-orbitals. 

with the symmetry rules of quantum mechanics. For  this reason $ 

i s  represented by an antisymmetric, determinantal function of spin- 

orbitals, a Slater determinant. 

relation 

This, however, i s  not consistent 
5 

N 

6 
The determinant i s  given by the 

D .  

. .  
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where q. represents the coordinates and spin of the j-th electron, 
J 

u. i s  the i-th orbital, and u.(q.) i s  the i-th spin-orbital occupied by 

the j-th electron. 
1 1 J  

In general, it is found that one-electron energies E I eigenvalues 
i 

Ei, a r e  in good agreement with experimentally observed ionization 

energies of the system (atom, molecule, o r  crystal). 

sum of the E., the eigenvalue of $ 

one-electron operators, i s  not in good agreement with the total energy 

of the system, namely, the energy which would be derived from the exact 

and the exact N-electron operator. Nevertheless, $ in the form 

of Eq. 1 is often considered a s  an adequate approximation for the 

N' exact $ 

However, the 

with respect to the sum of the N 
1 N 

$N N 

For crystals,  the one-electron results can also be described in 

t e rms  of localized orbitals by means of the following procedure: 

sider a crystal  bounded by a uniform surface. 

accurate one-electron equation has been established, say, by the method 

suggested by Slater. 

written in the form 

Con- 

Suppose that a relatively 

7 The one-electron eigenvalue problem may be 

(Ho f H1) u = E u ,  (2) 

where H i s  the one-electron, spatially periodic, Hamiltonian operator 

that would be derived if the solid were embedded in an  infinite lattice, 

and H 

introduced by the uniform surface. 

of Eq. 2 can be expanded into a se r ies  of Wannier functions 

0 

is the one-electron operator which accounts for the perturbation 
1 

The spatial par t  of the eigenfunctions 
8 an(r - R ) 

-S 
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:; 
associated with the operator H 

9 
by the relation 

Thus the i-th 
0 

eigenfunction is given 

u . ( r )  = C C U (R ) a n ( r  - R t 
1 -  s n in -s --S 

(3) 

where U. (R ) is a constant, and the sums a r e  over all lattice si tes R 

and over all bands n. Mathematically, Eq. 3 is exact i f  an  infinite 

number of bands is included in  the expansion. 

problems , however, through a judicious choice of localized, Wannier- 

like €unctions W ( r ,  R ) (for example, a suitable linear combination 

of Wannier functions at the site R ) *  the summation over n may be 

reduced to a number equal to the number of valence electrons per  

atom, without great loss of accuracy. 

used for different spins, a spin-orbital u.(q.) may be adequately 

in - s -S 

As in all practical 

n -  -S 

-S 

Thus, if different orbitals a r e  

1 J  

.L 1. 

Recall that the Block functions b (k, r) of the n-th band of the infinite n- - 
crystal  a r e  given by the relation 10 

H b ( k , r )  = E (k)b  ( k p r ) 9  o n - -  n -  n -  - 

and that the Wannier functions a ( r  - R ) of the n-th band a r e  determined 

by the expression 
n -  -S 

C b ( k , r )  exp (-ik - R ) $  
4 2  

-S - L k n - -  an(-T - R  -s ) = N  

where R is the s-th si te of the lattice, and N is the number of lattice 

sites. 

all bands and over all lattice si tes,  namely 

-S L 
The Wannier functions form a complete, orthonormal set  over 

28 

a m  (2 - R . )  an (2 - R.)  dr  = 6 6 s J 1 -  mn ij '  

Moreover, each Wannier function a ( r  - R ) is localized around, 

associated with, the s-th site. 
n -  -S 

111- 5 



represented by the relation 

where v is the number of valence electrons per atom, and c 

a constant. 

(R ) is in -s 

Without lo s s  of generality, suppose the crystal  is that of a 

monovalent metal ,  v equals unity and the number N 

equals the nurnber N of valence electrons. 

of Eq. 4 into the determinantal relation, Eq. 1, for the overall eigen- 

function $) yields 

of lattice s i tes  L 
For this crystal ,  substitution 

N 

where the subscript n equals unity has been omitted f rom the w’s and 

the c’s. Note that each column of the determinant in Eq. 5 is a l inear 

combination of the N Wannier-like functions associated with the N sites 

of the crystal. It follow-: from the rules for the product of two determi- 

nants that Eq. 5 can be written in the form 

. . .  I .  
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In the form of Eq. 6, the eigenfunction 9 for the whole crystal  
N 

admits the localized spin-orbital interpretation which is sought. Indeed, 

note that each Wannier-like function w(q, R ) is a spin-orbital associated 

with, localized around, lattice si te R (the set  of constants C.(R ), for  

i = 1, 2,  N,  i s  also associated with the same site R ). If the N electrons 

of the crystal  a r e  distributedamong the N spin-orbitals w(q, R ), an  

antisymmetric determinantal function, Eq. 6 ,  can be formed. This 

function is completely equivalent to  that obtained from the delocalized 

orbitals. ' s  constructed from either the localized 

or the delocalized spin-orbitals a r e  identical. 

-S 

-S 1 - s  

-S 

-S 

In other words, the 9 
N 

It should be noted that the localized spin-orbitals w(q,R ) a r e  not 
-S 

energy eigenfunctions of the one-electron equations. 

i s  a n  approximate eigenfunction of the Hamiltonian operator fo r  the 

whole crystal. Nevertheless, each localized spin-orbital can be assigned 

precise values fo r  the ionization energy, electron affinity, and excitation 

energies of the electron in the spin-orbital, in  a manner which is con- 

sistent with the usual definitions of these quantities. The values of the 

ionization energy, electron affinity, etc. , of a localized spin-orbital 

a r e  not equal t o  the corresponding values of the delocalized spin-orbitals. 

This point can be seen from the definition of the ionization energy given 

below. 

Only $N, Eq. 6 ,  

Suppose that \I, Eq. 6,  represents the ground state of the crystal. 

is 
N '  

The ionization energy of a spin-orbital localized around lattice si te R 

defined as the difference between the energy corresponding to a n  eigen- 
-S 

function $ and that of the ground state. The eigenfunction 9 i s  

given by Eq. 6 except that the s- th  column and the s- th  row of the first 

and the second determinants a r e  replaced by zeros ,  respectively, and 

N- 1 N- 1 
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(N !)'I2 is replaced by [ (N-1) ! jl/'. The Hamiltonian operator for 

'N- 1 
This definition of the ionization energy assumes that removal of a 

localized spin-orbital from the system does not a l ter  the -functional 

dependence of the other N- 1 localized spin-orbitals. 

is used in practically all approaches to the analysis of the electronic 

structure of solids (see,  for example, Koopmans' theorem for the one- 

electron Hartree-Fock equations ). 

i s  that corresponding to N lattice s i tes  and N-1 valence electrons. 

Such an  assumption 

11 

The other energies of a localizes spin-orbital can be defined in a 

manner analogous to that used for the ionization energy. 

C. ELECTRONEGATIVITY AND CHEMICAL POTENTLAL 

4 
In this section, the work of the authors on the identification of 

electronegativity with the negative of the chemical potential of an 

electron in an atom is summarized. 
* 

In Reference 4, an ensemble of identical, one-atom systems i s  

considered. 

electrons and ions. 

with a reservoir  of electrons and ions a t  a small temperature T (degrees 

Kelvin). 

and the reservoir.  

be derivable from the one-electron Hartree-Fock equations. 

words, the electrons a r e  viewed in an  ideal substance. 

Each atom is thought of a s  consisting of two components, 

The systems a r e  in thermodynamic equilibrium 

The components can flow back and for th  between the systems 

The energy eigenstates of the atoms a r e  assumed to 

In other 
12 

* 
Strictly speaking, the electronegativity has been identified with the 
electrochemical potential. 
in this chapter, however, the values of the chemical and the electro- 
chemical potential a r e  identical. 

For the reference level of energy selected 
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13 
According to the theory of statistics of ensembles, the physical 

situation described above obeys the rules of grand canonical ensembles. 

Use of these rules yields the following important conclusions: 

(1) Statistically, the energy E of a one-atom-system can be 

expressed as a continuous function E(q) of a continuous variable q 

which represents a statistical measure  of the charge in a valence spin- 

orbital. The range of the value of the charge q is from minus one 

electronic charge (-e)  (the orbital i s  doubly occupied) through zero 

(the orbital is occupied by one electron) to  plus one electron charge 

(+e)  (the orbital i s  ionized). 

(2 )  The chemical potential IJ. of a valence electron i s  given by 
C 

the relation 
= - (a E(q)/aq) a t  constant entropy. (7) 

IJ.C 

In the limit of very small  temperatures,  this potential is found to have 

the following exact values: 

)J. = -(I t A ) / z ~  for g = o (neutral atom), 

% 

C 

- - 0 3  fo r  q = e (positive ion), 

and 
f o r  q = -,e (negative ion), 

where I and A a r e  the f i r s t  ionization energy and the electron affinity of 

the atom, respectively. 

the valence electron spin-orbital. 

The quantities I and A can also be referred to  

is a function of 
IJ.c 

( 3 )  For  fractional values q and f o r  small  T 

both q and T. 
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(4) 33y virtue of (2 )  above, it is found that for  small temperatures 

(in the limit of zero temperature) an excellent approximation for E(q) is 

given by the relation. 

when the zero energy level is taken to be a t  the energy of the neutral 

atom (q equals zero). 

for E(q) and p for q = -e, 0, e. 

Note that this approximation yields exact values 

C 

( 5 )  The orbital electronegativity x(q) of a valence electron i s  

defined a s  
x(q) = ( a  E(q)/aq)  at constant entropy 

This is the f i r s t  t ime that a rigorous definition of x(q) is given. 

( 6 )  The value of the neutral orbital electronegativity x(0)  

obtained from Eq. 8 i s  identical to the value of electronegativity 

suggested by Mulliken. 14 It should be noted, however, that M,ulliken's 

value i s  considered to be approximate. 

yields that, in the limit of small  temperatures, x(0)  has the exact value 

given by the relation 

Here the t h e r m o d y n d i c  analysis 

I t A  
x(0) E 7 

( 7 )  The definition of the orbital electronegativity given above can 

be easily extended to orbitals in systems other than atoms. 

extension i s  discussed in the next section. 

Such an 
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D. WORK FUNCTION AND ELECTRONEGATIVITY 

Without loss of generality, consider a crystal  of a monovalent 

metal, bounded by a uniform surface. 

electronic structure of this metal  has been carr ied out with respect 

to a zero energy level taken at the points just outside the surface. 

Moreover,. suppose that both the delocalized and the localized spin- 

orbitals have been established, in accordance with the procedure 

discussed in Section B. 

Suppose the analysis of the 

Thermodynamically, for a system of N-electrons,  any se t  of N 

spin-oribitals which describes the system may be thought of as 

representing N degrees of freedom. 

a r e  treated statistically, the following results can be obtained: 

When these N degrees of freedom 

(1) Given the N delocalized spin-orbitals one-electron spin- 

orbitals, the negative of the chemical potential of the surface, with 

respect to the points just outside the surface, equals the work function. 
This is the well known thermodynamic definition of work function. 15,16 

(2 )  Given the N localized spin-orbitals Wannier-like functions, 

suppose that all degrees of freedom a r e  frozen except that corresponding 

to the spin-orbital localized around the surface si te R . Under this 

condition, the surface spin-orbital can be treated statistically by the 

same procedure as that used for atoms in Section C. In other words, 

this orbital may  be thought of as a surface atom. 

potential for the electron in  the orbital can be defined. For  example, 

in the limit of small temperatures,  the value of the chemical potential 

-S 

Thus a chemical 

of the localized spin- orbital equals 

- ( I  t A )/2e, 

where I and A a r e  the ionization energy 

S S 

S S 
and the electron affinity of 
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the orbital a s  defined in Section B. 

neutral orbital electronegativity of the spin-orbital, Eq. 9. 

This value equals the negative of the 

( 3 )  From thermodynamic equilibrium considerations, it can be 

shown that the chemical potential of the localized spin-orbital as 

defined in (2 )  must be equal to the chemical potential of the surface, 

a s  defined in (1 ). 
* 

(4) BY virtue of ( l ) ,  (2),  and ( 3 ) ,  it follows that the work function 

equals the neutral orbital electronegativity of a spin-orbital localized 

around a surface atom. 

In conclusion: (1) the characterization of the electronic structure 

of metals by localized spin-orbitals i s  equivalent to  the ordinary picture 

of electrons in metals ;  (2)  electronegativity can be given a rigorous 

thermodynamic definition; and ( 3 )  the neutral orbital electronegativity 

of a surface spin-orbital, atom, equals the work function of the surface. 

* 
The proof of this statement is analogous to that used in the study of 
chemical reactions with o r  withaut a catalyst. 17 
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CHAPTER IV 

PARAMETRIC DATA 

D. Lieb, F. Rufeh, L, van Someren, C. Wang 

A. SINGLE-CRYSTAL TUNGSTEN CONVERTER 

A guard-ring converter with Mo collectors and a nominally single- 

crystal  (110) tungsten emitter was  constructed and tested during the f i r s t  

quarter. 

range of 1700°K to 1900°K and the interelectrode spacing range of 0. 5 mil 

to  40 mils. The data was obtained in the form of cesium families at opti- 

mized collector temperatures. 

Performance data was obtained over the emitter temperature 

1. Emitter Preparation 

The emitter (W25) was prepared from an  ingot of nominal single- 

crystal  tungsten made by the Linde Division of Union Carbide Corporation, 

X-ray studies using the Laue back-reflection technique indicated that the . 

material  contained considerable sub structure which was stable to annealing, 

but that a l l  a reas  had an orientation that was  grossly (1 10) along the ingot 

axis, and that exact (110) directions always lay within 4" of the ingot axis. 

After polishing and heat treatment, the emitter showed several  

distinct grains, which glinted in slightly different directions. 

scopic examination revealed that the surface was composed of flat a reas  

of (1 10) plane bounded by curves and connected by an undulating back- 

ground, while occasional well defined plateaus or mesas  stood out against 

this background. The surface of the whole emitter (to within 0 . 4  inch of 

the edge) was qualitatively similar; a representative photomicrograph i s  

shown in Figure IV-1. 

The micro- 
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2, Performance Data 

The performance of this converter was recorded in t e rms  of cesium 

temperature families for  various values of emitter temperature and inter- 

electrode spacing. 

ness of the data for converter design, a constant set  of cesium temperatures 

have been used in these families. 

for analysis and correlation of converter parameter sn the interelectrode 

spacing values were chosen in a manner to yield a consistent set  of Pd  

values. 

in Table IV- 1. 

To simplify cross-plotting and to  increase the useful- 

In order to facilitate the use of this data 

The pressures  and interelectrode spacings used a re  p e s e n t e d  

Families of volt-ampere characterist ics were obtained by changing 

the cesium reservoir temperature while the other converter parameters 

were held constant. 

emitter temperature of 1700 OK, with a range of 5 to 40 mils in inter- 

electrode spacing. The collector temperature in these runs was held 

constant in the vicinity of its optimum value. 

indicated represents the temperature at the surface of the emitter; the 

output voltage is measured from a voltage tap a t  the cold end of the emitter 

sleeve. 
2 approximately 3 mV per A/cm . 

envelopes at  an emitter temperature of 1700°K is  shown in Figure IV-6. 

Figures IV-2 to IV-5 show these families at the 

The emitter temperature 

The correction factor for conversion to electrode voltage is 

A summary of the cesium optimized 

Cesium-temperature families obtained at an emitter temperature 

of 1800°K a r e  shown in Figures IV-7 through IV-13, and a summary of 

these envelopes is shown in Figure IV-14. 

emitter temperature of 1900°K is  shown in Figures IV-15 through IV-20.. 

The fully optimized performance of this converter for  the emitter temper- 

atures of 1700, 1800, and 1900°K is presented in Figure IV-21. 

Similar data recorded at the 

The 
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TABLE IV-1 
CESIUM VAPOR PRESSURE TABLE 

TEMPERATURE O K  PRESSURE, TORR 
436 0.0156 

444 

452 

0.0221 

0.0312 

460 0 0442 

0.0625 46 9 
477 0.0884 

487 

496 

0.125 

0.177 

507 0 .25  

517 0.353 

528 

539 

0 .5  

0.707 

551 1 . 0  

564 1.41 

577 2 .0  

591 2.83 

605 4 . 0  

620 5 .66  

636 

653 

671 

689 
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fully optimized envelopes of this converter a r e  compared with those of 

an etched Re:Mo converter (Figure IV-22). The W110-Mo converter is 

better than the etched Re-Mo converter by about 60 to  120 millivolts. 

A comparison at an interelectrode spacing of 10 mils  is shown in Figure IV-23. 

The increase in output power by about a factor of two i s  probably due to the 

better uniformity in the emitter surface. 

B SPACING MECHANISM 

A new spacing mechanism, shown in Figure IV-24, was designed for 

the variable-spacing converter in order to  simplify the assembly and in- 

crease the rigidity of the system. 

The converter is  located by the guard support plate, If which con- 

'tacts the guard and establishes the spacing reference. 

rods support the various elements of the converter and provide mounting 

adjustments. The ceramic rods extend between the emitter support plate 

and the micrometers to  form the spacing regulator, and the three springs 

provide the required tension to  move the emitter and to  maintain the 

proper contact between the ceramic rods and the micrometers.  

support plate is  split and is assembled around the converter; clamp 

screws ensure the rigidity of this assembly. 

the plate and the guard reduce the heat conducted to  the plate. 

Three threaded 

The guard 

Ceramic inserts between 

Spacing control is obtained by varying the distance from the emitter 

A support plate to the guard support plate by means of the micrometers.  

ball between the ceramic rod and the micrometer shaft allows the shaft 

to rotate freely without erratically affecting the spacing. The low heat 

conductivity and low thermal expansion of the rods and the water cooling 

for  the micrometers help to ensure stability with varying converter 
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temperatures. 

to follow the micrometers as they a r e  adjusted to control the spacing. 

With this arrangement variations in collector and guard temperatures 

have little effect on the interelectrode spacing. 

paths from emitter to collector a r e  minimized by arranging the system 

so that all of the collector insulators a r e  at guard potential rather than 

at emitter potential. 

Tension in the springs forces the emitter support plate 

Electrical  leakage 

C. WORK FUNCTION CORRELATION 

To examine the validity of theoretical expressions describing 

the plasma phenomena in thermionic converters, it is necessary to 

compare these expressions with experimental data for a wide range of 

converter operating conditions. Emitter work function is one of the 

most important parameters in the theoretical expressionsp since it 

influences both electron emission and ion generation at the emitter 

surface. An accurate experimental measurement of emitter work 

function, howeverp can only be made under a narrow range of converter 

operating conditions 

to  cover the other regions of operation. 

lation technique is presented and compared with the TE/ T, correlation. 

and the measured values must be extrapolated 

In this section a new corre-  

The new correlation i s  based on the thermodynamic equation: 

where T is surface temperatureo P is cesium pressurep  and A and B 

a r e  functions of the surface work function 4 .  The functions A and B 

a r e  assumed to be of the form: 
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wherela,, cy2 I P,, and P, are constants. 

combined to give: 

Equations 1 through 3 can be 

This equation can be compared with experimental data in order to  

determine the constants cy1 , a2 I) P, and (3,. 

The data used for this correlation is plotted as a function of kT In P 
1 

in Figure IV-25. 

shown in Figure IV-26. 

cept I and a slope s. 
slope a r e  given by: 

A c ross  plot of the data in t e rms  of In P versus - T is 

Each constant work function line has an inter- 

According to Equation 4, the intercept and the 

The intercept I i s  determined from the constant-work-function lines 

and i s  plotted as a function of 4 in Figure IV-27. 

and Pl a r e  determined from a least-squares f i t  to the data. 

The constantsa,, 

a1 = -1.04 tor r /eV 

( 6 )  
p, = 19.3 to r r  
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The slope S is determined from the constant-work-function lines in 

Figure IV-26 and is plotted as a function of 4 in Figure IV-28. The 

constantsap and pa a r e  determined from a least-squares f i t  to the data. 

3 
cyp = 4.82 x 10 to r r ,  " K i e v  

4 pa = 1. 5 5 x  10 tor r ,  OK 

In order to  evaluate this correlation, the experimental data was 

compared with the calculated values, using Equations 4, 6, and 7. 

Figure IV-29 shows that the experimental and calculated values a r e  in 

agreement within 30mil1,iv.dlts. The same data correlated by the T, / T, 
plots show a scatter of about 100 millivolts (Figure IV-30). 
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CHAPTER V 

STUDIES ON VAPOR-DEPOSITED TUNGSTEN EMITTER MATERIALS 

L. van Someren 

During this quarter work has been car r ied  out on the physical 

metallurgy of tungsten vapor-deposited from the fluoride and chloride 

compounds. 

bulk material under various mechanical and thermal treatments,  as a 

necessary preliminary to  attempting to modify the surface of the 

mater ia l  to  enhance its usefulness for thermionic emitters. 

This work is aimed at understanding the behavior of the 

Material was supplied by San Fernando Laboratories, Inc., 

California, in the form of square tubes made by deposition onto one-inch- 

square molybdenum mandrels. 

and then the mandrel was dissolved in a n  acid etch solution. After 

receipt a t  Thermo Electron, each tube was slit longitudinally at the 

corners to produce four strips of flat mater ia l  about an inch wide. 

Discs were then cut from these s t r ips  by spark-machining. In some 

cases a flat was ground at the edge of the disc, and the flat, together 

with a r e a s  of the plane surfaces of the disc, was prepared for metal- 

lography by electropolishing in dilute sodium hydroxide solution and 

A deposit about 0 .2  inch thick was made, 

etching with alkaline ferricyanide solution. 

the deposit was ground flat in some but not all cases. 

The uppermost surface of 

Chemical analyses of the material were not supplied by the 
% 

manufacturer, but are under way at present. 

A. FLUORIDE MATERIAL 

1. As Received 

The surface of the mater ia l  next to the mandrel is a close 

replica of the mandrel  surface. It bears  visible traces of the grinding 
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marks  on the mandrel, but is quite smooth. 

5 p  (40,0OO/mm ). 

reveals well defined columnar grains several  mill imeters long growing 

from a thin layer of small equi-axed (randomly oriented) grains at the 

mandrel surface. 

a s  some grains grow in diameter a t  the expense of their neighbors. How- 

ever,  small new grains sometimes occur. 

deposits ( 0 . 2  inch thick) is confused and rough on a scale large com- 

pared with the depth of focus of an optical microscope, so  that it i s  

not possible to photograph it. 

mined, i f  the mater ia l  i s  lightly ground andthen electropolished and 

etched. 

prepared in this way, and reveals the wide range of grain s izes  present. 

Excluding the smallest grains, the average size is about 70  p (200/mm ), 

implying a change in linear grain dimensions by a factor of 15 or  so 

between the two surfaces of the deposit. 

occurs most rapidly a t  the s ta r t  of the deposit. 

grain size is closer to that at the top than to that at the bottom. 

The grain size is about 
2 

A longitudinal c ross  section of the deposit (Figure V-1) 

The grain diameter increases with deposit thickness, 

The upper surface of the 

However, the grain size can be deter-  

Figure V-2 shows a t ransverse section of the top surface 

2 

It seems that the change 

At the mid-plane the 

The grains a r e  unusually i r regular ,  in comparison with mater ia l  

formed by more  conventional methods. Grain boundaries are highly 

angular, when examined in both longitudinal and t ransverse sections. 

They do not show the tendency to form smooth curves meeting at 

tr iple points found in annealed material. 

Figure V-3 shows a discontinuity in the grain structure near 

the mid-plane (just visible in Figure V-1). Total interruption of 

deposition usually results in the nucleation of a complete new se t  of 

grains when deposition i s  restarted: in the present case the grains 
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F i g u r e  V-2. Top S u r f a c e  of Deposit  Prepared to  Show 
G r a i n  Size. WF2A. 

s 
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Figure V-3. Detail of Discontinuity in Middle of Deposit 
Thic kne s s . W F. 
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continue ac ross  the interruption, so  this discontinuity may have been 

caused by a minor perturbation in the environment during growth. 

The material  was quite brittle in tension (for example, under 

a hammer blow), but no samples have been broken by a drop from 

the bench to the floor. 

below. 

Preferred-orientation studies a r e  described 

2. Heat Treatment 

Various- specimens were heated by electron bombardment in a 

cold-walled furnace evacuated by a Vac-Ion pump to a pressure  in the 
-5 -7 

range of 10 to 10 torr. This technique i s  well established, and it 

has been shown that no contamination of the specimen occurs. Specimen 

temperatn- were measur-ed with an optical pyrometer sighted on the 

surface; a correction was applied to the observed reading, assuming 

the specimen emissivity was 0.4. 

Composite photographs of the c ross  section of specimen W F 2  

before and after heat treatment are shown in Figures V-4 to V-7. These 

photographs show (4 )  the initial appearance, and the appearance of the 

same surface after exposure to (5) 6 hours at 2000°C and (6)  1 hour at 

24OO0C, and (7)  the appearance after repolishing and etching the latter 

surface. Figure V-4 is v e ~ y  &*lar to Figure V-1, and together they 

indicate the variation in i n ~ i a l  microstructure between samples. 

Figure V-5 shows the coalescence of some groups of small  i r regular  

grains, and the lessening of contrast between grains a s  the etched 

surfaces became smoothed by heat treatment. Signs of new grain 

boundaries a r e  visible to the bottom of the deposit (near the refe'rence 
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scratch). The more  intensive heat treatment, 1 hour at 2400"C, prior 

to Figure V-6 produces further coalescence of grains, rounding of 

individual grains, and development of new boundaries near the bottom 

of the deposit. These a r e  m a r e  clearly revealed in Fi 

which shows that the large number of columnar grains 

0.2 rnrn of the bottom ?f the deposit has been replaced by a smaller 

number of non-columnar grains there. However, in the res t  of the 

thickness of the material  the grossly columnar structure is  retained; 

while the irregular g r o u p  of grains have been lost ,  some angularities 

at boundaries have bemme smoothed, and some columnar grains have 

coalesced without lo s s  of orientation. Figures V - 8  and V-9 a r e  of 

specimen WF2,  and show the top of the deposit in the as-received 

condition and after the two heat treatments. 

shows the irregularity af grain outlines and the wide range of grain 

sizes, and the latter,  Figure V-9, confirms the conclusions f rom 

The former,  Figure V-8, 

sections of the material  such as Figure V-7. 

been absorbed by the larger  ones, with only slight changes in the 

mean grain size, and some smoothing of the irre'gular boundaries of 

the large grains has occurred. The effect of a more  intensive heat 

treatment, 6. 5 hours at2600°C, is  shown in Figure V-10, a cross 

The small grains have 

section after repolishing. 

whole thickness of the specimen, except for a narrow ( less  than 

0. 5 mm) layer of grains a t  the top surface of the deposit. 

had the top surface ground before this heat treatment. 

Here one grain runs through almost the 

This sample 

The effect of milder heat tyeatments, such a s  might be used in 

preparing an  emitter for operation, is  shown in Figures V-11 and V-12 

for specimens heated 20  minutes a t  1900°C and 6 hours at 1800°C.  The 

structure i s  changed relatively little from that found in the as-received 

material. 

V-8 



(\1 

I 
I4 

d: 
7 co 
9 

a 
d 
cd 

u 
0 

0 
0 
0 
N 
* 
cd 
rn 

v-9 

b 

I 
> 
a, 
k 



68-R -4- 14 

Figure V-8. Top of Deposit as  Received, Ground, Polished, 
and Etched. WF2.  
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68-R-4-15 

Figure V-9. Top of Deposit, After 6 Hours at 2000°C and 
1 Hour at 24OO0C, Repolished and Etched. WF2C. 
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O R P O R A T I O N  ... 

3. Conclusions 

The fluoride material has a grain structure which is stable under 

relatively severe heat treatment. 

the grains near  the bottom of the deposit, which lose their columnar 

structure and form larger equi-axed grains. 

is retained even after 1 hour at 2400"C, though some coarsening of the 

The first changes which occur are in 

The columnar s t ructure  

columnar grain size is  observed then. 

completely lost after 6. 5 hours at 2600°C. 

This columnar s t ructure  is 

B. CHLORIDE MATERIAL 

1. As Received 

This mater ia l  is deposited at a higher temperature than the 

fluoride mater ia l ,  and because of technical problems associated with 

this temperature,  two shorter  square tubes were supplied in place of 

the single long tube of fluoride material .  

slightly smoother to the eye and to the touch than does that of fluoride 

mat e r ial. 

The deposit surface appears 

Cross sections revealed gross  differences between the two 

techniques. 

through the whole thickness of the deposit, the chloride mater ia l  was 

composed of layers'varying in thickness and grain size. 

While the fluoride deposits contained some grains running 

In each deposit, 

nominally 0 . 2  inch thick, there  were 11 distinguishable discontinuities, 

varying from gross porosity ( # 9 )  or  layers  of foreign mater ia l  (#2)  to 

simple renucleations of the deposit ( # l o  and # l l ) ' o r  m e r e  lines (#7 ) .  

Cross sections of each of the two ingots a r e  shown in Figures V-13 and 

V-14 with the discontinuities numbered. 

and shipped at different t imes,  there  a r e  similar types of discontinuities 

at similar positions in the deposits. 

Though the ingots were made 

V-13. 
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In the course of preparing samples for metallography the following 

curious observation was made: 

10 volts), and when the cross  section was rinsed and pressed on a paper 

towel to dry  it, a liquid with a distinct blue color oozed from #9 in the 

a specimen was electropolished (57'0 NaOH, 

middle of the deposit and left marks  on the towel. 

m o r e  liquid could be seen oozing from the pores near the middle of the 

deposit, and in fact it proved difficult to eliminate this effect. 

Under the microscope 

About two-thirds of the way up through the deposit No. 2 (Figure V-14) 

is a region between +8 and #9 showing a continuous grain structure with 

layers of varying etch response. 

these striated regions, in some cases  associated with porosity (Figure V-15) 

and in some cases not (Figure V-16). 

reported for Federite, a non-equilibrium structure found in W-Re alloys 

made by vapor deposition. 

Detailed examination revealed several  of 

This appearance resembles that 

The first layer of conspicuous mater ia l  in the depos ic, $2, is 
. .  found about 0.7 mm from the bottom of the deposit, an;?. :; -;car in 

Figures V-13 and V-14. 

polishing (without etching) i s  shown in Figure V-1 i 

Figure V-14 shows that the grain structure i s  cone; 

layer.  The sharp contrast in electropolisl.,in 7 se-,a 

that it is not pure tungsten. However, c o r t i r ~ ~ e , ~  :>.-,?'<: PL3 removes the 

material  (Figure V-17a). 

A detail of this zone in i ~ p ?  :i. fL 

!.\.c 

. :i. * T O S S  this 

- sirongly suggests 

2 .  Heat Treatment 

Specimens from ingot 1WC of chlor. 3 r - 7 ~  ,:rial were heat-treated 

in exactly the same way as the fluoride specime _-  . , iscussed above. Two 

differences were noticed. 

f rom room temperature to red heat considerakle : 

During the first stage5 . .,eating the specimen 

assing occurred, 

V-14 



., 
a, 

k 
0 

2 

2 u 
s + 
v1 
M 
d 
3 
Ff 
E 
0 
k 
+I 

cI\ 

I 
d 
4 

pt; I 

co 
Q 

.. 
a, a 
k 
0 

.rl 

2 u 

E 
0. 
k 

zc( 

4 
d 

J 

% 
a, 
k 

.r( 

G-r 

V-15 



68-R-4-37 

Figure V-15. Detail of Striated Zones Near Porosity in 
Ingot. 2WC. 
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Figure V-16. Detail of Striated Zones without Porosity 
in Ingot 2WC. 
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Figure V-17. First Foreign Layer, #2, Electropolished 
Only. 2WC. 
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68-R-4-22 

Figure V-17a. Same Region After Prolonged Electropolishing, 

V-19 



and this limited the rate  at which the temperature could be raised. 

Furthermore,  during one run in  which the specimen attained 2230"C, 

considerable evaporation occurred from the specimen while at tem- 

perature, and condensation on the bell jar seriously interfered with 

temperature measurement. 

specimen was at 21OO"C, and does not occur f rom pure tungsten at 

2230°C. 

Such evaporation did not occur when the 

Specimens which were heat-treated showed progressive changes 

in the microstructure as follows: 

After 6 hours at 1800" C considerable recrystallization has 

occurred; in some regions, Figure V-18, such as 0 to #2 and # l o  to 

#11, the columnar structure is  retained, while in others, such as #11 

to the top surface and around #9, the grains adopt a m o r e  nearly 

equi-axed arrangement. 

zones, the converse is not always true. 

a r e  of nearly equal width, but show unequal changes in  structure after 

this heat treatment. 

While greater changes occur in  the wider 

Zones #4 to #5  and #5 to #6 

Treatment for a n  hour at 2100°C developed the structure shown 

in Figure V- 19, in which considerable further coarsening has occurred 

in some layers ,  #9 to # l o ,  while others, such as #5 to #6, have changed 

little. 

etch pits, ra ther  than the layered appearance of Figures V-15 and V-16. 

The striations around #7 a r e  seen in Figure V-20 to be bands of 

The corresponding views of .the prepared surface of the top of the 

deposit a r e  given in Figures V-21 to V-23, and show the striking loss  of 

angularity of the grains during the mildest heat treatment, together with 

an  increase in grain size. 

v-20 



rr) 
N 

I * 
I 

I 
a 
a 

Tf( 
N 

-+ 
I a 
a 

I 

F4 

u* 
0 
0 

v-21 



68-R -4-25 

Figure V-20. Detail Near #7 from Figure V-19. 
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Figure V-25 shows the effect of exposure to 1 hour at 2230°C on 

the sample whose prior appearance is shown in Figure V-24. 

seen here  correspond to  those in Figure V-13, though they differ in 

thickne s s . 

The layers  

Coarsening of the grain size has occurred to a n  extent which 

varies erratically between layers. The largest  grain s ize  is  now 

found between #9 and #11, but, in contrast to  Figure V-19, this coarse  

structure does not extend to the surface of the deposit. However, in 

Figure V-26 we see  that more  intensive treatment (1 hour at 2370°C) 

produces a large grain size f rom #9 to the surface. 

the layer of material  at #2 and produces porosity there and at other 

interfaces 

This also eliminates 

3. Conclusions and Discussion 

0.2-inch chloride mater ia l  is deposited in many layers of varying 

thickness grain size,  and homogeneity. Heat treatment produces 

changes which vary unsystematically from layer to  layer (though for the 

samples examined the response is uniform within each layer).  Changes 

occur in conditions too mild to produce changes in fluoride mater ia l  - 
e. g., 6 hours at 1800°C. 

Variations in fluorine content are  known to affect the grain 

growth of fluoride tungsten. 

in different layers of this material may  account for the varying response 

to heat treatment. 

Variations in the content of some impurity 

C. POLE FIGURE DETERMINATION BY X-RAY DIFFRACTION 

Following the work of Doctor Ling Yang of Gulf General Atomic, 

studies of the preferred orientation of fluoride and chloride samples 
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68-R 4-29  

Figure V-24. C r o s s  Section as Received, Polished and 
Etched. WC4A. 
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Figure V-25. Cross SectionAfter 1 Hour at 2230°C, 
Polished and Etched. WC4B ', 
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Figure V-26, Cross Section After 1 Hour at 2370°C, 
Polished and Etched. WCOB '. 
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have been made. 

a simplified mode. The specimen is se t  with its surface on the diffract- 

ometer axis, and its surface normal bisecting the incident and diffracted 

beams, while the angle between the latter is chosen to  fulfill the Bragg 

condition only for the type of crystal  plane which is expected to occur 

parallel to the surface (e. g. 28- 40" for deposits from the chloride 

having (1 10) planes parallel to the surface for the radiation used here). 

Then the surface normal is rotated out of the plane defined by the x-ray 

beams through a n  angle a and the intensity of the desired reflection 

is recorded as a function of cy, A normalized cumulative integral of 

the I-versus-cy curve is derived algebraically and identified with the 

distribution curve showing the fraction of the specimen having the 

chosen planes with angle a of the surface normal. 

A standard Norelco Pole Figure accessory is used in 

This curve runs 

from 0 at CY = 0 to 1 at some a between 10" and 30" .  Its convexity 

upwards is a measure of the preferred orientation in the sample. The 

raw data from a well oriented sample takes the form of a syrnmetrical 

smooth curve rising from cy = -20 to a peak at cy = 0 and dropping to 

a = t20. 

The beam width i s  about 2 mm. Sampling of a number of 

grains is obtained by oscillating the specimen along a line in its own 

plane perpendicular to the incident beam, through an amplitude of 1. 5 cm. 

The period of the sampling oscillation is kept small compared to the 

t ime constant of the recording circuit, in order  to reduce oscillations 

in the recorded signal due to any single strongly-reflecting grain. 

Laue back reflection photographs of the mater ia l  consist of 

uniform rings, indicating that the mater ia l  is isotropic in that there 

is no preferred orientation along certain directions in the deposit. 
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That is to say, there is no analog of the rolling direction or t ransverse 

direction found in rolled sheet. 

about its own surface normal will not a l ter  the x- ray  data obtained from 

it. 

Consequently, the rotation of the sample 

Most measurements have been made without any slits between 

the specimen and the detector (scintillation counter) opening. This 

leads to a loss in angular resolution accompanied by a smoothing of 

the output data curve. 

range of cy from -20"  to t20", and the average of two readings for cy 

was processed to give the final data. 

used, from a tube operating a t  35 kV and 15 mA. 

Most measurements have been made over a 

Unfiltered CuKcy radiation is 

1. Results 

The results a r e  best  presented in the form of graphs showing 

the fraction of the x-ray intensity originating within an  angle a of the 

symmetrical ( a  = 0 )  position, as a function of a. Such graphs will be 

called pole figures. 

of the grains present having the investigated crystal  planes within an  

angle CY of the surface. (The investigated plane is (1 10) for chloride 

samples and (100) for fluoride samples). Such curves a r e  necessary 

to present the data, since a curve cannot in general be represented by 

a few simple parameters without making assumptions about its shape. 

However, it may sometimes be convenient to summarize the data from 

These can be interpreted as indicating the fraction 

a curve by using numerical indices, such as angles necessary to include 

5070 and 90% of the intensity. These figures may be interpreted to mean 

that 50% of the grains have, say, (100) planes within the specified 

number of degrees of the surface. 

behavior of the surface must await empirical correlations between 

curve shape and mater ia l  performance. 

Any inference about the thermionic 
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2.  As-Received Material 

The curve derived from data taken from the top surface of 

fluoride mater ia l  in the as-received (unground) condition is shown 

in Figure V-27. 

in that half the a rea  is oriented within 1 7 degrees of the (1 00) planes. 

A random sample would give a straight line from 0"  to ZOO, with a 

50% angle of 10". Another piece of mater ia l  was ground flat (on a 

conventional s urface grinder) and then electropolished to  remove 

material  damaged by grinding. 

0. 002 inch (50  microns)  had been removed by polishing, and this is 

shown in Figure V-28. 

equal to that of the as-received material. 

deposit, next to the mandrel, was examined briefly and found to give 

an  intensity of (100) reflection invariant with a0 implying that it had a 

random orientation. 

is a few microns, comparable with the diameter of the grains found 

at the bottom of the deposit, and presumably only this thin non-columnar 

This pole figure shows a strong preferred orientation, 

A pole figure was obtained after about 

It indicates a preferred orientation almost 

The reverse  surface of the 

The penetration depth of x-rays into the sample 

layer of mater ia l  is contributing to the signal, and is shielding the 

better-oriented structure f rom the x-rays. 

If the mater ia l  is groundp sandblasted or  abraded to produce 

mechanical damage, the damaged layer has a random or disordered 

structure,  at least  to a depth of a few microns, and it gives a straight- 

line pole figure characteristic of random material .  

ground surface allows the random mater ia l  to recrystall ize and re -  

cover the structure and orientation of the underlying undisturbed 

material. 

prepare emitters for thermionic converters was studied. 

Annealing the 

The effect of certain treatments which might be used to 
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Sample WF5 was ground and annealed 20  minutes at 1900°C 

and then gave the pole figure in Figure V-29.  

much milder preferred orientation than the as-deposited material ,  and 

approaches the straight line that a random sample would give (from 0 

at 0 "  to 1 at 20"). 

tures  below 1900°C) it would have a performance characterist ic not of 

fluoride vapor-deposited mater ia l  but of that heat treatment which had 

This clearly shows a 

If such a surface were used as a n  emitter (at tempera- 

been applied to the material .  

If a m o r e  drastic heat treatrrient is applied the ground surface 

layer can regain the orientation of the underlying deposit. 

further treatment causes recrystallization, and grain growth, the 

coarse new grains will not necessarily share  the preferred orientation 

of their predecessors,  and in any case the x-ray technique makes it 

difficult to sample coarse  grains. 

by x-rays is oriented correctly, it can produce a very strong contribution 

to the measured diffracted intensity, which produces a large perturbation 

of the I-versus-cr curve and a corresponding perturbation of the derived 

J I - versus - cr curve. 

conspicuously in Figure V-31 around 0. 85  on the ordinate. 

If, however, 

For  i f  at any time one grain illuminated 

This effect occurs in Figure V-30 and more  

Figure V-30 indicates that when a ground surface is treated for 

1 hour at 2400°C, the resulting surface has some of the preferred 

orientation of the deposit, at least  at large crI but the chance of finding 

(100) planes within two degrees of the surface is near that for a random 

sample. 

res tores  a large par t  of the preferred orientation, while a lso producing 

recrystallization and a large grain size (Figure V-1 0).  

More intensive treatment, such as 6. 5 h r s  at 2600°C (Figure V-31), 

Further work on preferred orientation of deposits is under way. 
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CHAPTER V I  

PLASMA ANALYSIS 

D. Lieb 

A set of plasma equations was developed and solved numerically 
1 

in the Final Report on J P L  Contract NAS7-508. During this quarter 

particular attention was devoted to  the emitter and collector boundary 

conditions. 

equations, and the solution was compared with the previous results.  

A new set  of boundary conditions was incorporated in the 
1 

1 
In the set  of equations used previously, particle currents entering 

and leaving the plasma boundaries were expressed in t e rms  of random 

current. 

A t  the emitter,  

c 
J = J exp ( -V , / e  ) 

eo r o  eo 

At the collector for accelerating sheath, 

At the collector for retarding sheath,. 

where J 

collector sheaths, respectively, L 

from the plasma into the emitter and collector sheaths, V, and V 

and J 
r o  r l  

a r e  the electron random currents a t  the emitter and 
c + 

and Jel are the electron currents  eo 

C 
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a r e  the emitter and collector sheath heights, and 8 

electron temperatures in the plasma at  the sheaths. 

were used for ion currents.  

and 8 a r e  the 

Similar equations 
eo e l  

2 , 3  In nuclear reactor theory and some plasma analysis, the boundary 

conditions for  the particle current a r e  expressed in  t e r m s  of directed 

current. The plasma boundary conditions a re  then: 

c 
J eo = J r o  exp ( -VE/ee0)  - J e o / 2  

-P 

Jel = Jrl + Jel/ 2 

(4) 

where J and Jel a r e  the net electron currents at  the sheaths. At  the eo 
emitier sheath, for the cases examined s o  far, the random current is 

typically an order of magnitude higher than the net electron current. 

The effect of using the directed current will  be small. 

sheath, however, where random current i s  almost equal to the net 

electron current,  significant changes can be expected. 

At  the collector 

1 
As described previously, the plasma equations a r e  solved by 

selecting a set of six initial values and then advancing step by step 

across  the plasma. 

electron current density, and the reference value of the plasma potential, 

four of the initial conditions a r e  determined. 

be chosen arbi t rar i ly  and their correctness evaluated from the collector 

sheath relations when the solution reaches that sheath. The collector 

From the emitter boundary equations, the initial 

The remaining two must 
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sheath equations are: 

For  electron-accelerating sheath: 

- 
Jel - Jr. - Jsc exp (VC/@ C (7) 

and for electron-retarding sheath: 

where J 

the collector. 8 is the collector temperature, and I and J a r e  the 

random and net ion currents at the collector sheath. 

directed current for random current gives: 

and I a r e  electron- and ion-saturated emission currents for s c  sc 

C r l  il 
Substituting the 

T 
J ei  
2 

- -  - Jr. - Jsc exp (-V c c  / e  ) 

and 

Since J and J.  a r e  practically constant near the collector and the 
e 1 

random currents fall with particle density, solutions with a directed- 

current boundary condition must occur closer to  the emitter. 

tain the same spacing, a larger initial particle density i s  required. 

particle density distributions for  the two boundary conditions a r e  com- 

pared in Figure VI-1. Other than the slight increase in initial concen- 

tration, the results a r e  similar.  

directed-current boundary condition can be expected to  produce only 

small deviations from random-current boundary solutions. 

To .main- 

The 

For  most of the cases studied the 
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